NEET/AIIMS Toppers’ Handwritten Note books (Physical Chemistry I,II)

₹1,250.00

 

Physical chemistry is the study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibrium.

Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a macroscopic or supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular/atomic structure alone (for example, chemical equilibrium and colloids).

Some of the relationships that physical chemistry strives to resolve include the effects of:

  1. Intermolecular forces that act upon the physical properties of materials (plasticity, tensile strength, surface tension in liquids).
  2. Reaction kinetics on the rate of a reaction.
  3. The identity of ions and the electrical conductivity of materials.
  4. Surface science and electrochemistry of cell membranes.
  5. Interaction of one body with another in terms of quantities of heat and work called thermodynamics.
  6. Transfer of heat between a chemical system and its surroundings during change of phase or chemical reaction taking place called thermo chemistry
  7. Study of colligative properties of number of species present in solution.
  8. Number of phases, number of components and degree of freedom (or variance) can be correlated with one another with help of phase rule.
  9. Reactions of electrochemical cells.

Key concepts

The key concepts of physical chemistry are the ways in which pure physics is applied to chemical problems.

One of the key concepts in classical chemistry is that all chemical compounds can be described as groups of atoms bonded together and chemical reactions can be described as the making and breaking of those bonds. Predicting the properties of chemical compounds from a description of atoms and how they bond is one of the major goals of physical chemistry. To describe the atoms and bonds precisely, it is necessary to know both where the nuclei of the atoms are, and how electrons are distributed around them.
Quantum chemistry, a subfield of physical chemistry especially concerned with the application of quantum mechanics to chemical problems, provides tools to determine how strong and what shape bonds are, how nuclei move, and how light can be absorbed or emitted by a chemical compound. Spectroscopy is the related sub-discipline of physical chemistry which is specifically concerned with the interaction of electromagnetic radiation with matter.

Another set of important questions in chemistry concerns what kind of reactions can happen spontaneously and which properties are possible for a given chemical mixture. This is studied in chemical thermodynamics, which sets limits on quantities like how far a reaction can proceed, or how much energy can be converted into work in an internal combustion engine, and which provides links between properties like the thermal expansion coefficient and rate of change of entropy with pressure for a gas or a liquid. It can frequently be used to assess whether a reactor or engine design is feasible, or to check the validity of experimental data. To a limited extent, quasi-equilibrium and non-equilibrium thermodynamics can describe irreversible changes. However, classical thermodynamics is mostly concerned with systems in equilibrium and reversible changes and not what actually does happen, or how fast, away from equilibrium.

Which reactions do occur and how fast is the subject of chemical kinetics, another branch of physical chemistry. A key idea in chemical kinetics is that for reactants to react and form products, most chemical species must go through transition states which are higher in energy than either the reactants or the products and serve as a barrier to reaction. In general, the higher the barrier, the slower the reaction. A second is that most chemical reactions occur as a sequence of elementary reactions, each with its own transition state. Key questions in kinetics include how the rate of reaction depends on temperature and on the concentrations of reactants and catalysts in the reaction mixture, as well as how catalysts and reaction conditions can be engineered to optimize the reaction rate.

Branches and related topics

  • Thermochemistry
  • Quantum chemistry
  • Electrochemistry
  • Photochemistry
  • Surface chemistry
  • Solid-state chemistry
  • Spectroscopy
  • Biophysical chemistry
  • Materials science
  • Physical organic chemistry
  • Micromeritics
Office Location
Direct Admission Global, 136, Second Floor, Vishal House, Block C, Adjacent to Bluebells International School, Zamrudpur, East of Kailash, New Delhi - 110048
Parent Organization - SAMSMRTYA EDUCATION SERVICES PRIVATE LIMITED
Appointment
Application Form
Doorstep
Get Started